skip to main content


Search for: All records

Creators/Authors contains: "Yang, Qing"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this paper we present Sniffer Faster R-CNN++, an efficient Camera-LiDAR late fusion network for low complexity and accurate object detection in autonomous driving scenarios. The proposed detection network architecture operates on output candidates of any 3D detector and proposals from regional proposal network of any 2D detector to generate final prediction results. In comparison to the single modality object detection approaches, fusion based methods in many instances suffer from dissimilar data integration difficulties. On one hand, fusion based network models are complicated in nature and on the other hand they require large computational overhead and resources, processing pipelines for training and inference specially, the early fusion and deep fusion approaches. As such, we devise a late fusion network that in-cooperates pre-trained, single-modality detectors without change, performing association only at the detection level. In addition to this, lidar based method fail to detect distant object due to its sparse nature so we devise proposal refinement algorithm to jointly optimize detection candidates and assist detection for distant objects. Extensive experiments on both the 3D and 2D detection benchmark of challenging KITTI dataset illustrate that our proposed network architecture significantly improves the detection accuracy, accelerating the detection speed.

     
    more » « less
    Free, publicly-accessible full text available October 28, 2024
  2. Free, publicly-accessible full text available July 1, 2024
  3. Free, publicly-accessible full text available July 1, 2024
  4. Free, publicly-accessible full text available August 7, 2024
  5. Free, publicly-accessible full text available June 4, 2024
  6. With the wider adoption of edge computing services, intelligent edge devices, and high-speed V2X communication, compute-intensive tasks for autonomous vehicles, such as object detection using camera, LiDAR, and/or radar data, can be partially offloaded to road-side edge servers. However, data privacy becomes a major concern for vehicular edge computing, as sensitive sensor data from vehicles can be observed and used by edge servers. We aim to address the privacy problem by protecting both vehicles’ sensor data and the detection results. In this paper, we present vehicle–edge cooperative deep-learning networks with privacy protection for object-detection tasks, named vePOD for short. In vePOD, we leverage the additive secret sharing theory to develop secure functions for every layer in an object-detection convolutional neural network (CNN). A vehicle’s sensor data is split and encrypted into multiple secret shares, each of which is processed on an edge server by going through the secure layers of a detection network. The detection results can only be obtained by combining the partial results from the participating edge servers. We have developed proof-of-concept detection networks with secure layers: vePOD Faster R-CNN (two-stage detection) and vePOD YOLO (single-stage detection). Experimental results on public datasets show that vePOD does not degrade the accuracy of object detection and, most importantly, it protects data privacy for vehicles. The execution of a vePOD object-detection network with secure layers is orders of magnitude faster than the existing approaches for data privacy. To the best of our knowledge, this is the first work that targets privacy protection in object-detection tasks with vehicle–edge cooperative computing. 
    more » « less
  7. In the past decade, Deep Neural Networks (DNNs), e.g., Convolutional Neural Networks, achieved human-level performance in vision tasks such as object classification and detection. However, DNNs are known to be computationally expensive and thus hard to be deployed in real-time and edge applications. Many previous works have focused on DNN model compression to obtain smaller parameter sizes and consequently, less computational cost. Such methods, however, often introduce noticeable accuracy degradation. In this work, we optimize a state-of-the-art DNN-based video detection framework—Deep Feature Flow (DFF) from the cloud end using three proposed ideas. First, we propose Asynchronous DFF (ADFF) to asynchronously execute the neural networks. Second, we propose a Video-based Dynamic Scheduling (VDS) method that decides the detection frequency based on the magnitude of movement between video frames. Last, we propose Spatial Sparsity Inference, which only performs the inference on part of the video frame and thus reduces the computation cost. According to our experimental results, ADFF can reduce the bottleneck latency from 89 to 19 ms. VDS increases the detection accuracy by 0.6% mAP without increasing computation cost. And SSI further saves 0.2 ms with a 0.6% mAP degradation of detection accuracy. 
    more » « less